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Abstract

This paper shows that in a space filled with heat generating parallel plates and laminar forced convection, the heat transfer d
be increased beyond the level known for parallel plates with optimal spacing. The technique consists of inserting in every entran
new generations of smaller plates, because smaller plates have thin boundary layers that fit in the unused (isothermal) entranc
technique can be repeated several times, and the result is a sequence of multi-scale flow structures that have progressively higher
densities. The work consists of numerical simulations in a large number of flow configurations, one differing slightly from the ne
complete optimized architecture and performance of structures with one, two and three plate length scales are reported. Diminishing re
are observed as the number of length scales increases. This method can be used to develop multi-scale nonuniform flow structures for hea
exchangers and cooled electronic packages.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Compactness and miniaturization are driven by the nee
to install more and more heat transfer into a given volu
The figure of merit is heat transfer density. A recent tre
in heat transfer research has been the focus on the ge
tion of optimal flow architecture, as a mechanism by whic
the system achieves its maximal density objective under
straints [1]. The strategy is to endow the flow configurat
with the freedom to morph, and to examine systematic
many of the eligible design configurations en route to
best. Strategy and systematicsearch mean that architectur
features that have been found to be beneficial in the pas
be refined and incorporated in more complex systems o
present.

One class of flow features that aid the achievemen
high heat transfer density are the optimal spacings that
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1290-0729/$ – see front matter 2004 Elsevier SAS. All rights reserved.
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been reported for natural convection [2–4] and forced c
vection [5,6]. The progress in this area has been revie
in [1,7]: Optimal spacings have been determined for paralle
plates channels, cylinders in cross-flow, staggered par
plates, and pin fin arrays with impinging flow. In each con
figuration, the optimal spacing is a single length scale th
distributed throughout the available volume.

The optimal spacing idea was taken theoretically one
further in [8], where the flow structure had not one but s
eral optimal length scales. These were distributed non
formly through the flow space—more numerous and sma
in the entrance region of the available volume, because the
the boundary layers were thinner and more plates coul
fitted together optimally.

In this paper, we evaluate this design approach num
cally, by considering forced convection cooling of a volu
filled by parallel plates that generate heat. The flow and
transfer are simulated numerically for a wide variety of fl
configurations. Each numerical simulation shows that the
trance region of every parallel-plates channel has a cor
unused (isothermal) fluid. In this wedge-shaped region
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Nomenclature

Be pressure drop number, Eq. (11)
D0 spacing betweenL0 plates . . . . . . . . . . . . . . . . m
D1 spacing between theL0 andL1 plates when the

L1 plate is inserted . . . . . . . . . . . . . . . . . . . . . . . m
D2 spacing between theL1 andL2 plates when the

L1 andL2 plates are inserted . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

L0 flow length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
L1 flow length of the first insert . . . . . . . . . . . . . . . m
L2 flow length of the second insert . . . . . . . . . . . . m
P pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Pr Prandtl number
q total heat transfer . . . . . . . . . . . . . . . . . . . . . . . . W
q̃ dimensionless heat transfer density, Eq. (15)
q̃0 dimensionless heat transfer density with

no plate inserts
q̃1 dimensionless heat transfer density with

L1 inserts
q̃2 dimensionless heat transfer density with

L1 andL2 inserts
q ′ heat transfer rate per unit length . . W·m−1·K−1

q ′′ heat flux . . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tw wall temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
T∞ inlet temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
u,v velocity components . . . . . . . . . . . . . . . . . . m·s−1

x, y cartesian coordinates . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

�P pressure difference . . . . . . . . . . . . . . . . . . . . . . . Pa
µ viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . kg·sm−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

Superscripts

m maximum
opt optimum
w wall

Superscript

(̃ ) dimensionless variables, Eq. (5)
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insert progressively smaller heat generating plates, and
we optimize the multi-scale assembly. The maximization
heat transfer density is pursued geometrically, by vary
more and more degrees of freedom. The result is a c
of progressively better flow structures with multiple leng
scales that are distributed nonuniformly through the fl
system.

2. Model

The plates geometry is shown in Fig. 1. The longest pl
have the lengthL0, and the spacing between them isD0.
Shorter plates with the lengthsL1, L2, . . . , and thicknesst
are inserted between the long plates. A related geometr
been studied numerically in [9]. The flow through the pla
is laminar forced convection driven by the imposed press
difference�P . The objective of this study is to determin
the optimal lengths of the plates that can be inserted in
channel such that the heat transfer rate density is maxim

In the model shown in Fig. 1, the flow is assumed to
steady, laminar, incompressible and two-dimensional,
all the thermophysical properties are constant. The sym
try of the configuration in Fig. 1 allows us to study only h
of the flow structure, as shown in Fig. 1(b). The steady sta
conservation equations for mass, momentum, and energ

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u + v

∂u = − 1 ∂P + ν∇2u (2)

∂x ∂y ρ ∂x
s

.

e

(a)

(b)

Fig. 1. The physical domain, computational domain and boundary cond
tions.

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂P

∂x
+ ν∇2v (3)

u
∂T

∂x
+ v

∂T

∂y
= α∇2T (4)

where∇2 = ∂2/∂x2 + ∂2/∂y2. The computational domai
is shown in Fig. 1(b). The horizontal and vertical veloc
components areu andv. The above equations were non
mensionalized by using the following variables
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(
x̃, ỹ, L̃1, L̃2, D̃0, D̃1, D̃2, t̃

)
= (x, y,L1,L2,D0,D1,D2, t)/L0 (5)

T̃ = T − T∞
Tw − T∞

P̃ = P

�P
, (ũ, ṽ) = (u, v)

�PL0/µ
(6)

The resulting governing equations are

∂ũ

∂x̃
+ ∂ṽ

∂ỹ
= 0 (7)

Be

Pr

(
ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)
= −∂P̃

∂x̃
+ ∇2ũ (8)

Be

Pr

(
ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ

)
= −∂P̃

∂ỹ
+ ∇2ṽ (9)

Be

(
ũ

∂T̃

∂x̃
+ ṽ

∂T̃

∂ỹ

)
= ∇2T̃ (10)

where the Prandtl number isν/α, andBe is the dimension-
less pressure drop number [6,10]

Be = �PL2
0

αµ
(11)

The boundary conditions for fluid flow are:̃P = 1, ṽ = 0 and
∂ũ/∂x̃ = 0 at the inlet of the computational domain(x̃ = 0);
P̃ = 0 and∂(ũ, ṽ)/∂x̃ = 0 at the exit(x̃ = 1); no slip and no
penetration on the plate surfaces; andṽ = 0 and∂ũ/∂ỹ = 0
on the plane of symmetry. The temperature boundary c
ditions are:̃T = 1 on the blades surfaces, and̃T = 0 on the
inlet plane of the computational domain. The exit plane
the plane of symmetry are modeled as adiabatic.

We are interested in the geometric arrangement for w
the overall heat transfer rateis maximum. The local heat flu
from the horizontal plate for a case where the numbe
inserted plates is equal to 2, is

q ′′ = k

(
−∂T

∂y

)
y=0

+ k

(
∂T

∂y

)
y=(D2)

−

+ k

(
−∂T

∂y

)
y=(D2)

+
+ k

(
∂T

∂y

)
y=(D1)

−
(12)

This flux is integrated over the total heat transfer surface
obtain the total heat transfer from theD0L0 space,

q ′ = k

L0∫
0

(
−∂T

∂y

)
y=0

dx + k

L2∫
0

(
∂T

∂y

)
y=(D2)

−
dx

+ k

L2∫
0

(
−∂T

∂y

)
y=(D2)

+
dx

+ k

L1∫
0

(
∂T

∂y

)
y=(D1)

−
dx (13)

The dimensionless total heat transfer rate is
q̃ ′ = q ′

k(Tw − T∞)

=
1∫

0

(
−∂T̃

∂ỹ

)
ỹ=0

dx̃ +
L̃2∫
0

(
∂T̃

∂ỹ

)
ỹ=(D̃2)

−
dx̃

+
L̃2∫
0

(
−∂T̃

∂ỹ

)
ỹ=(D̃2)

+
dx̃

+
L̃1∫
0

(
∂T̃

∂ỹ

)
ỹ=(D̃1)−

dx̃ (14)

The total dimensionless heat transfer rate density is

q̃ = q̃ ′

D̃0
= q ′

k(Tw − T∞)D̃0
(15)

The heat transfer rate density was calculated based o
total heat transfer from all the plates, divided by the to
volume. This quantity is the heat transfer density, which
proportional to the ratioq ′/D0, cf. Eq. (15).

3. Numerical method

Eqs. (8)–(10) were solved using a finite element code
with quadrilateral elements and biquadratic interpolat
functions. For more details see [12]. The nonlinear equat
resulting from the Galerkin finite-element discretization
Eqs. (8)–(10) were solved using successive substitution
lowed by the quasi-Newton method. As convergence crit
we used

‖u(k) − u(k−1)‖
‖uk‖ � 10−4 and

‖R(u(k))‖
‖R0‖ � 10−4 (16)

whereR(u) is the residual vector,u is the complete solution
vector,k is the iteration counter, and‖ · ‖ is the Euclidian
norm. The grid was nonuniform in both̃x and ỹ direc-
tions. The grid was double graded in theỹ direction so as
to put more nodes near the plate surfaces to capture
accurately the behavior in the boundary layers. The
varied from one geometric configuration to another. Grid
finement tests performed in the range 105 � Be � 108 and
Pr = 1, indicated that the solutions were insensitive to f
ther grid doubling inx̃ andỹ when 400 nodes perL0 were
used in both̃x andỹ directions. Table 1 shows how grid in
dependence was achieved. To validate the numerical sch

Table 1
Grid refinement test for̃D = 0.06, Be = 106 andPr = 1

Number of nodes perL0 in
x̃ andỹ directions

q̃
∣∣ q̃i−q̃i+1

q̃i

∣∣
100 512.08 –
200 515.42 0.0065
400 518.50 0.0058
800 520.67 0.0041
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further, the scheme was used to generate results for the
mal spacing between parallel plates with forced convect
These results were then compared with results availab
the literature [5], and the agreement was found to be v
good.

The optimized results reported in this paper are m
independent. Independence was achieved by increasin
number of nodes perL0 during simulations in the vicinity
of the optimal spacing. The number of nodes perL0 was in-
creased until it had no effect on the maximizedq̃ value. This
ensured that each optimized flow architecture is indepen
of the grid fineness. The algorithm used for determining
optimal dimensions(Li,Di) consisted of nested loops, su
that theq̃ value was calculated for all possible combinatio
of (Li,Di) in the vicinity of the architecture with the max
mum q̃ value.

4. Numerical results

In this section we present the numerical results for the
timal spacingD̃0,opt, and the corresponding maximum he
transfer densitỹqm. We also report the optimal length scal
when new plates are inserted in the structureD̃0L0, leading
to new optimal spacings and revised estimates of the max
mum heat transfer density. Thenumerical optimization was
performed in the range 105 � Be � 108 and Pr = 1. The
thickness of thẽL2 plate was set at̃t = 10−4.

The optimization of the multiscale structure has sev
degrees of freedom. First, we determined the optimal s
ing and maximal̃q whenL̃1 = 0, i.e., there are no inserts
the channel formed between twoL0 plates. The optimization
of the spacing̃D0 is illustrated in Fig. 2.

Next, we inserted ãL1-long plate as shown in Fig. 1, an
optimized simultaneously the two length scales of the c
figuration,L̃1 and the spacing̃D1. This work is illustrated
in Fig. 3. Because in this case the computational dom
is symmetric about̃y = D̃1, we were able to set̃t = 0 for

Fig. 2. The effect of plate spacing̃D, on the dimensionless total heat trans
density in the absence of plate inserts.
-

e

t

the thickness of thẽL1 plate. Note that the spacing betwe
the L0 plates becomes̃D0 = 2D̃1,opt, and that this value is
slightly larger than thẽD0,opt value found when theL1 plate
is absent. In other words, the insertion of a smaller plat
the entrance of a channel enlarges the optimal spacing o
channel.

In the final step of this sequence of increasingly m
complex structures, we inserted an even smallerL2 plate
in the entrance formed between theL0 and L1 plates. As
shown in Fig. 4, we optimized the dimensionsL̃2 and D̃2
while holding L̃1,opt fixed at the value determined prev
ously (Fig. 3). In this case the spacing between theL̃0 plates
becomes̃D0 = 2D̃1,opt = 4D̃2,opt. The thickness of thẽL2
plate was again set att̃ = 10−4. Fig. 5 shows that such
thickness is small enough so that the maximizedq̃ is insen-
sitive to changes iñt . We have performed the same pla
thickness sensitivity study for Be= 106, and arrived at the
same conclusion:̃t = 10−4 is small enough so that its effe
on the optimized plate lengths and spacings is negligible

Fig. 3. The effect of the length̃L1 on the dimensionless total heat trans
density forBe = 106.

Fig. 4. The effect of the length̃L2 on the dimensionless total heat trans
density forBe = 106 by holdingL̃1,opt fixed.
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Fig. 5. The effect of the plate thickness on the dimensionless maximum
heat transfer rate density and̃L2.

Fig. 6. The effect of the pressure drop number on the optimized spaci

The stepwise increase in the largest spacing(D̃0, D̃1,

D̃2, . . .) is summarized in Fig. 6. The optimized spacing
tween theL0 plates is now greater than when theL2 plate
was absent.

The procedure stated above was repeated for severBe
values in the range 105 � Be � 108 andPr = 1. The results
are shown in Figs. 6–8. Fig. 6 shows the behavior of
optimal spacings,(D̃0, D̃1, D̃2)opt. The optimal spacing de
creased as the dimensionless pressure drop increases
ratios D̃0,opt/D̃1,opt and D̃1,opt/D̃2,opt are nearly constan
and equal to 1.83 and 1.76, respectively. As shown in
the theoretical ratio of successive spacings is 2. The nu
ically derived ratios are not exactly equal to 2 because
spacing between thẽL0 plates increases slightly when a ne
(smaller) plate is inserted and the spacings and length
optimized.

Fig. 7 shows the behavior of the optimal length sca
(L̃1,opt, L̃2,opt). The optimal length scales increase as
dimensionless pressure drop number increases. The
L2,opt/L1,opt is nearly constant and equal to 0.15. In the
alytical treatment of the same problem [8], the optimal ratio
e

Fig. 7. The effect of the pressure drop number on the optimized le
scales.

Fig. 8. The effect of the pressure drop number and the number of le
scales on the dimensionless maximum total heat transfer density.

wasL2/L1 = 0.25, which agrees with Fig. 7 in an order
magnitude sense. Furthermore, in [8] it was pointed out
the theoretical ratioL2/L1 = 0.25 is at best an approxima
tion because it is based on the assumption that the insertio
of each new (smaller) plate has a negligible effect on
boundary layers coating the older (longer) plates. Inde
the present work shows that this assumption is indee
approximation, because each new plate insert affects th
timal spacing between existing plates. Because the optim
spacing is governed by the thicknesses of the boundary
ers that merge at the end of each channel, this means th
insertion of a small plate in the entrance region influen
the older boundary layers that continue downstream. Th
sertion of a small plate near the channel entrance has
effect of thickening the older boundary layers, and enlarg
the optimal spacing between the older plates.

Fig. 8 shows the effect ofBe on the maximal heat transfe
rate density for several combinations of length scales.
maximal heat transfer rate density increases as the nu
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Table 2
Comparison between the numerical and analytical re-
sults for the maximized heat transfer rate density of
the multi-scale flow construct

m q̃/Be1/2

Analytical [8] Numerical, Fig. 8

0 0.36 0.558
1 0.44 0.593
2 0.51 0.606

of plates increases. The effectbecomes less noticeable wh
the number of length scales isincreased to three. An optima
lengthL̃2 was not found whenBe < 106.

Fig. 8 also shows that the maximized heat transfer rat
density increases in proportion withBe1/2. This confirms the
analytical result [8], which can be rewritten in the notat
employed in this paper:

q̃[8] = 0.36Be1/2
(

1+ m

2

)1/2

(17)

Parameterm is the number of new (inserted) plate lengt
for example,m = 2 in Fig. 4. The prediction (17) is that th
heat transfer rate density increases in progressively small
steps as the number of length scales increases. This is
firmed by the numerical results shown in Fig. 8. Table
shows that the numericalq̃m results are relatively less sens
tive thanq̃[8] to increasingm.

5. Conclusions

In this paper we illustrated the emergence of multi-sc
forced convection flow structure for maximal heat trans
rate density installed in a fixed volume. This objective w
achieved by inserting smaller plates in the entrance re
formed between successive plates. This technique utiliz
the fullest the fluid surrounding the two tips of two neighb
ing plates, where the boundary layers are the thinnest.
number of plate length scales increases as the flow stre
or the driving pressure difference increases.

Optimal spacings were found numerically for structu
with one, two and three length scales. Performance incre
as complexity increases, but diminishing returns are also ob
served. The optimized spacings increase slightly with e
new (smaller) plate that is inserted in the entrance regio
each channel.

As the number of plates increases, the flow structure
comes less permeable and the flow rate decreases. A
same time, the total heat transfer rate density from the s
structure increases. It was found numerically that when
number of plates increases to three the increase in the
transfer rate density becomes less noticeable, hence for th
numerical computation the number of plates inserted in
flow structure was limited to two.
-

,

s

e

t

The number of plate length scales is limited by the
lidity of the boundary layer assumption. The smallest p
is the one where the plate length is comparable with
boundary layer thickness. This criterion was developed
alytically in Refs. [8,13], where it was shown that the nu
ber(m) of plate length scales (in addition toL0) is a slowly
increasing function ofBe. Them(Be) function is reported on
page 243 of Ref. [13], and in the range 104 < Be < 1011 is
approximated by

m = 0.78(log10Be − 3) (18)

For example, whenBe = 107 we find thatm = 3.13, which
means that a structure with three inserts(L1,L2,L3) is al-
ready too refined: the smallest plate(L3) does not contribute
much, because it is not swept by a distinct boundary la
This reinforces the conclusionreached in the preceding para
graph.

The fundamental value of this study is that multi-sc
flow structures are applicable to every sector of heat
changer design. The novelty is the increase in heat tr
fer density, and the nonuniform distribution of length sca
through the available space. This approach promises the d
velopment of new and unconventional internal flow str
tures for heat exchangers and cooled electronic packages.
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